
iGCSE Computer Science – Unit 4, Topic 12: Binary English Name: _______________________

Worksheet: Signed Numbers ©2024 Chris Nielsen – www.nielsenedu.com

Until now, we haven’t considered the representation of negative numbers. Binary numbers that are always
interpreted to have positive values are called unsigned numbers. There are many cases where programs will
require the ability to represent negative numbers. When a binary representation of a number includes the
ability to represent both positive and negative numbers, the representation is called a signed number.

Sign and Magnitude

When we work with positive and negative denary values, we simply place a plus (+) or minus (−) sign in
front of the number to represent positive and negative, respectively. As we have discussed, digital computers
store and manipulate data as zeros and ones. There are no other symbols, so we will need to represent the
positive and negative with bit values.

Perhaps the most obvious way to represent a negative number in binary is to use the most significant bit
represent a positive or negative sign, and have the remaining bits represent an unsigned number as we’ve
been working with in previous lessons. This representation is called sign and magnitude, and the positive
sign is represented by a zero while the negative sign is represented by a one.

There are some drawbacks to using sign and magnitude. Let’s examine one of these.

1. Write the sign and magnitude equivalent the denary numbers 21 and −21 into the appropriate row, then
add the binary digits.

Bit value − / + 64 32 16 8 4 2 1

carry over

denary +20 in
sign and magnitude

denary −20 in
sign and magnitude

sum

denary conversion

As we can see, with sign and magnitude, we cannot simply add positive and negative numbers. Another
drawback is that there are two representations of zero – a positive zero and a negative zero (for an 8-bit sign
and magnitude number, these are 0000_0000 and 1000_0000, respectively).

One’s Complement

You should remember the word complement from your study of set theory. As an example, if we consider the
universe, U = { 1, 2, 3, 4, 5 } and we have set A = { 2, 5 }, then the complement of set A is
Ac = { 1, 3, 4 }. In set theory, taking the complement inverts (or flips) the element that are in the set with
those outside of the set.

For a binary digit, the complement of zero is one and the complement of one is zero. A positive one’s
complement number is the same as an unsigned number. A negative one’s complement number is found by
taking the complement of every bit of the number. With this knowledge, complete the table below.

denary +20 in binary 0 0 0 1 0 1 0 0

denary −20 in one’s complement

sum

Page 1 of 4

iGCSE Computer Science – Unit 4, Topic 12: Binary English Name: _______________________

Worksheet: Signed Numbers ©2024 Chris Nielsen – www.nielsenedu.com

Although the sum of these may look incorrect, if we realize that taking the one’s complement of
0000_0000 is actually 1111_1111, our answer is actually correct. The problem is just that we have two
representations of zero: a positive zero (0000_0000) and a negative zero (1111_1111).

There are other reasons that one’s complement is not as nice as the next representation, but since one’s
complement is not included in the curriculum, we will end our discussion here. Just know that there is a
representation called one’s complement and it is not used very much in practice.

Two’s Complement

To lead into our discussion of two’s complement, let’s first look a bit at the possible binary values that we
can use to represent a number in binary. To keep the range of numbers small, let’s examine all the binary
numbers that can be represented with three binary digits. Starting at zero and repeatedly adding one to the
number, we come up with the series: 000, 001, 010, 011, 100, 101, 110, 111.

If we add 1 to 111, we get the value 1000. This value
does not fit into the three bits, so there is overflow with
the carry over lost, and the resultant value is a repeat of
the bits 000. This is represented in Figure 1: Cyclical
Three-bit Sequence.

Considering the addition of one to 111 results in a value
of 000 suggests that we might want to represent negative
one (−1) by the bits 111, negative two (−2) by the bits
110, and so on. This allows us to use the same algorithm
for addition of positive values to both positive and
negative numbers.

However, if we decide to use 111 to represent negative
one (−1), it can no longer be used to represent positive
seven (+7, the value that the binary digits would convert
to if they were unsigned). There must be a dividing point
for which values are positive and which are negative. A
convenient point that almost exactly divides equally the
number of positive and negative numbers is where the
most significant bit changes from a zero to a one. For
three bit numbers, all numbers from 001 to 011
represent positive numbers, and all numbers from 100 to
111 represent negative numbers.

This system of representing numbers is called two’s
complement, and the denary equivalent of three-bit
numbers represented using this system is given in Figure
2: Two’s Complement Representation.

With two’s complement, there is one greater negative
number than positive number, there is only one
representation of the value zero, and we can quickly tell
if the number is positive or negative by looking only at
the most significant bit.

Figure 1: Cyclical Three-bit Sequence

Figure 2: Two’s Complement Representation

Page 2 of 4

+1

+2

+3

−1

−2

−3

−4

0

iGCSE Computer Science – Unit 4, Topic 12: Binary English Name: _______________________

Worksheet: Signed Numbers ©2024 Chris Nielsen – www.nielsenedu.com

Overflow With Two’s Complement

With two’s complement, an operation causes a carry over beyond the most significant bit, such as when
adding 001 to 111 with the result of 000, this is not actually an overflow – it is just adding one to negative
one, resulting in zero. An overflow occurs when an operation causes a carry over into the most significant bit
with no carry over out of the most significant bit. For a three-bit two’s complement number, this occurs, for
example, when adding 001 to 011, resulting in 100. In that case, the maximum possible value represented
(011, denary +3) is exceeded, resulting in the looping around to the value to the maximum negative possible
value represented (100, denary −4).

Converting a Positive Binary Number to Negative Two’s Complement

Converting a positive denary number into two’s complement binary number is the same as we have done for
every other representation (unsigned, sign and magnitude, and one’s complement). To get the negative
equivalent of the number in two’s complement, the first step is the same as with one’s complement – we take
the complement (invert) each bit. The “two” from “two’s complement” refers to needing a second step. For
the second step, we add one to the result.

denary +20 in binary 0 0 0 1 0 1 0 0

denary −20 in one’s complement (flip)

denary −20 in two’s complement (+1)

Let’s verify that we get zero when we take the sum.

carry over

denary +20 in binary 0 0 0 1 0 1 0 0

denary −20 in two’s complement

sum

When we add a positive number to its negative equivalent in two’s complement, the result is equal to zero.
With two’s complement, there is exactly one representation of the value zero.

The thick-border table cells contain the carry-out (left) and carry-in (right) of the most significant bit. Since
these are the same, there has been no overflow with the addition.

Converting Negative Two’s Complement to a Positive Binary Number

So how to convert from a negative two’s complement number back to a positive value? Interestingly (and
thankfully easy to memorize), it’s the same way as we converted to a negative value. I expect you’ll need to
see it work to believe it, so let’s do it.

denary −20 in two’s complement

complement the bits (flip)

add one (+1)

Page 3 of 4

iGCSE Computer Science – Unit 4, Topic 12: Binary English Name: _______________________

Worksheet: Signed Numbers ©2024 Chris Nielsen – www.nielsenedu.com

Converting Directly From Two’s Complement to Denary

The most obvious way to convert a negative two’s complement number into denary is to first convert the
number to the positive equivalent, then convert that number to a denary value in the same way as we have
done in previous lessons.

The following table shows a method to convert directly from two’s complement to denary. It is exactly the
same as converting an unsigned number, but the leftmost bit value is negated.

Table 1: Place Values for a Two’s Complement Number

bit position 7 6 5 4 3 2 1 0

place
value

exponential −27 26 25 24 23 22 21 20

denary −128 64 32 16 8 4 2 1

binary digits (bits) 1 1 0 1 0 1 1 0

denary conversion -128 + 64 + 16 + 4 + 2 = -42

Now try this for yourself.

2. Given the two’s complement number 1010_0101, complete the table to convert to denary directly.

a) bit position 7 6 5 4 3 2 1 0

place
value

exponential

denary

binary digits (bits)

denary conversion
(write the equation)

b) Now verify this by converting to a positive number and then to denary.

two’s complement 1 0 1 0 0 1 0 1

complement the bits (flip)

add one (+1)

denary conversion
(write the equation)

Summary

Using two’s complement to represent signed numbers in binary has advantages over the alternatives we have
examined. One advantage over sign and magnitude is that positive and negative numbers can be operated on
in the same way when adding and subtracting numbers. Another advantage, over both sign and magnitude
and one’s complement, is that there is a single representation of the number zero. For these reasons, two’s
complement is the most common way to represent signed numbers in computers.

Page 4 of 4

	Sign and Magnitude
	One’s Complement
	Two’s Complement
	Overflow With Two’s Complement
	Converting a Positive Binary Number to Negative Two’s Complement
	Converting Negative Two’s Complement to a Positive Binary Number
	Converting Directly From Two’s Complement to Denary
	Summary

